NEW COMPOUNDS

Phenylpropionyl-dl-alanine and Phenylbutyryl-dl-alanine

Two new derivatives of alanine have been prepared from the amino acid and the corresponding acid chlorides in the presence of alkali. After isolation, each compound was thrice recrystallized from water, dried, washed with benzene, dried and analyzed. The recrystallizations served to raise the melting points one to three degrees to constant values.

 β -Phenylpropionyl-dl-alanine.—M. p. 139.5-140° (uncor.).

Anal. Calcd. for $C_{12}H_{16}O_{3}N$: C, 65.14; H, 6.83; N, 6.33; neut. eq., 221. Found: C, 65.06; H, 6.76; N, 6.36; neut. eq., 223.

 γ -Phenylbutyryl-dl-alanine.—M. p. 120-121° (uncor.).

Anal. Calcd. for $C_{13}H_{17}O_{2}N$: C, 66.35; H, 7.28; N, 5.96; neut. eq., 235. Found: C, 66.21; H, 7.27; N, 6.07; neut. eq., 233.

Phenylacetyl-dl-alanine was also prepared by the above procedure and was found to melt at $150.5\text{--}151^\circ$. Shiple and Sherwin report $150\text{--}152^\circ$.¹

- (1) Shiple and Sherwin, J. Biol. Chem., 53, 463 (1922).
- (2) Analyses for C, H and N by Dr. Francine Schwarzkopf, Elmhurst, L. I., New York.

Institute of Polymer Research Polytechnic Institute of Brooklyn Brooklyn, New York

B. Levy A. D. McLaren

RECEIVED NOVEMBER 12, 1948

Derivatives of 3,5-Dimethylhexanoic Acid¹

6-Benzoylamino-3,5-dimethylhexanoic Acid.—3,5-Dimethylcyclohexanone oxime, 34.4 g., was converted to the benzoylamino acid according to the procedure of Marvel and Eck.² The product, m. p. 107.5–109°, weighed 45 g.

Anal. Calcd. for $C_{25}H_{21}O_3N$: C, 68.44; H, 7.99; N, 5.33. Found: C, 68.24; H, 8.28; N, 5.52.

The intermediate lactam and 6-amino acid were isolated previously.3

6-Benzoylamino-2-bromo-3,5-dimethylhexanoic Acid.—6-Benzoylamino-3,5-dimethylhexanoic acid, 84 g., was brominated in the usual way. The yield of the 2-bromo acid, which melted at 140.5-144.5°, was 50 g.

Anal. Calcd. for $C_{15}H_{20}O_3NBr$: C, 52.63; H, 5.85. Found: C, 52.44; H, 6.02.

- (1) From the Ph.D. Thesis of A. D. McLaren, University of Missouri, 1943.
 - (2) Eck and Marvel, Organic Syntheses, 19, 20 (1939).
 - (3) Ungnade and McLaren, J. Org. Chem., 10, 29 (1945).

(4) Eck and Marvel, Organic Syntheses, 19, 18 (1939).

DEPARTMENT OF CHEMISTRY UNIVERSITY OF MISSOURI COLUMBIA, MISSOURI

A. D. McLaren

RECEIVED NOVEMBER 12, 1948

2-Decen-1-ol, 2-Undecen-1-ol, 2-Decenal, 2-Undecenal and Derivatives

2-Decen-1-ol and 2-undecen-1-ol prepared by the method of Delaby¹ had refractive indices, n^{26} D 1.4482 (Delaby, n^{16} D 1.4510) and 1.4490 and densities, d^{26} , 0.8440 (Delaby, d^{16} , 0.846) and 0.8375, respectively. The melting points and analyses of the 3,5-dinitrobenzoates and p-nitrophenylurethans of these alcohols are shown in Table I.

TABLE I

3,5-Dinitrobenzoates and p-Nitrophenylurethans of 2-Decen-1-ol and 2-Undecen-1-ol

	ſ	Alcohol	2-Decen-1-ol		2-Undecen-1-ol	
Com- pound		Deriva-		p-Nitro-	3,5-Di-	p-Nitro-
		tive		phenyl-	nitro-	phenyl-
	(tive	benzoate	urethan	benzoate	urethan
Formula				$C_{17}H_{24}N_2O_4$	C ₁₇ H ₂₄ N ₂ O ₈	C18H26N2O4
M. p., °C.				81.5	66.0-66.5	78.0-78.5
- 1	Cai	r- Calcd. Found	58.2	63.7	59.0	64.1
%	bor	I] Found	58.0	63.6	59.2	64.5
Analyses,	Hy dro		6.3	7.5	6.6	7.8
	gen		6.1	7.5	6.5	7.8
	Nitro- Calco		1. 8.0	8.7	7.9	8.4
- (gen	\ Foun	d 8.0	8.9	7.8	8.4

2-Decenal and 2-undecenal were prepared from their corresponding alcohols by the oxidation method of Delaby and Guillot-Allègre.² The melting points and analyses of the semicarbazones and 2,4-dinitrophenylhydrazones of these aldehydes are shown in Table II. The absorption spectra of the aldehydes, semicarbazones, and 2,4-dinitrophenylhydrazones (Table III, exhibit single maxima having characteristic extinction coefficients for these types of compounds.^{3,4}

TABLE II

SEMICARBAZONES AND 2,4-DINITROPHENYLHYDRAZONES OF 2-DECENAL AND 2-UNDECENAL

	Aldehyde	2-Decenal		2-Undecenal	
Com- pound	≺ .	Semi- carbazone	2,4-Di- nitro- phenyl- hydrazone	Semi- carbazone	2,4-Di- nitro- phenyl- hydrazone
Formula		$C_{11}H_{21}N_{2}O\\$	C16H22N4O4	C11H21N1O	C17H14N4O4
M. p., °C.		167-168°	128.8	161.5-162.	5 122.6
8	Car-∫Calcd.	63 .9	57.5	64.0	58.6
	bon \ Found	63.8	57.2	63.8	58.1
် ရှိ	Hydro-∫Calcd.	10.3	6.6	10.3	6.9
ا (ج	gen Found	10.1	6.4	10.2	6.8
Analyses,	Nitro-∫ Calcd.	18.7	16.8	18.7	16.1
٤ ∫ ≥	gen (Found	18.9	16.9	18.9	16.3
a I	Delaby, ref. 1	m. p. 16	8.5°.		

TABLE III

Absorption Spectral Data for 2-Decenal, 2-Undecenal and their Semicarbazones and 2,4-Dinitrophenylhydrazones

Characteristic of absorption spectra		Maximum, mμ	Extinction coefficient, $E_1^{\mathbf{g./1}}$.	Molar extinction, Emol. /1.
	Aldehyde	221-222	109.0	16,867
2-Dece	∫ Aldehyde - ∫ Semicarbazone	264	143.0	30,375
nal	2,4-Dinitrophenyl- hydrazone	377	86.3	28,824
0.77	Aldehyde	221-222	100.4	16.786
2-Un-	Semicarbazone	263-264	135.0	30,173
nal	2,4-Dinitrophenyl- hydrazone	374-378	81.7	28,445
C	D		_	. 173 . 0

• • • • • • • • • • • • • • • • • • •	
Southern Regional	C. E. Swift
Research Laboratory ⁵	R. T. O'CONNOR
New Orleans 19	L. E. Brown
Louisiana	F. G. Dollbar

RECEIVED NOVEMBER 8, 1948

- (2) Delaby and Guillot-Allègre, Bull. soc. chim., [4] 53, 301 (1933).
 - (3) Evans and Gillam, J. Chem. Soc., 565 (1943).
 - (4) Roberts and Green, This Journal, 68, 214 (1946).
- (5) One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, U. S. Department of Agriculture. Article not copyrighted.

⁽¹⁾ Delaby, Bull. soc. chim., [5] 3, 2375 (1936).